If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+7x-7=0
a = 7; b = 7; c = -7;
Δ = b2-4ac
Δ = 72-4·7·(-7)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7\sqrt{5}}{2*7}=\frac{-7-7\sqrt{5}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7\sqrt{5}}{2*7}=\frac{-7+7\sqrt{5}}{14} $
| 3(4w+1)/5=-2 | | (n-11)*10=70 | | X-(90-x)=24 | | 2y+5=70+3/10 | | 3x+10=84-1/5 | | 9/2x-7=2x/3-2 | | 2/x=0.84 | | 12.5÷x=5 | | 3x=0.3+x/4+x | | (7c-5)(2-9c)=0 | | 15x+21=3x+39 | | 33=18y=27 | | 13=6y-1 | | 0.5m=3m-7 | | 100u^2+1=0 | | 3x+2(2x-5)=-3-6x | | 4g+16=12 | | 4f-3=11 | | 5^2x-1=8 | | 128x=8 | | -2x=7,2 | | y-7,2=10,6 | | 2(3p+4)=p | | 5(x+1)=11-x | | 10g-20=59 | | 5^4x=8 | | -3a=0.9 | | 2.3+a=7 | | 3x+1/2x=6 | | 5x=-4.5 | | x=10x-11 | | 135=(2y-3)(2y+3) |